Global Stability Analysis of a Curzon-Ahlborn Heat Engine under Different Regimes of Performance
نویسندگان
چکیده
We present a global stability analysis of a Curzon–Ahlborn heat engine considering different regimes of performance. The stability theory is used to construct the Lyapunov functions to prove the asymptotic stability behavior around the steady state of internal temperatures. We provide a general analytic procedure for the description of the global stability by considering internal irreversibilities and a linear heat transfer law at the thermal couplings. The conditions of the global stability are explored for three regimes of performance: maximum power (MP ), efficient power (EP ) and the so-called ecological function (EF ). Moreover, the analytical results were corroborated by means of numerical integrations, which fully validate the properties of the global asymptotic stability.
منابع مشابه
The Curzon-Ahlborn efficiency for three different energy converters
In this work we present three energy converters which have the same efficiency under certain optimum conditions of performance. The first one is the well-known Curzon-Ahlborn finite-time heat engine. The second one is an infinitetime cycle operating between two thermal bodies with finite heat capacities. The last case is a water mixer working as engine, which is designed with two stationary flu...
متن کاملVan der Waals gas as working substance in a Curzon and Ahlborn-Novikov engine
Using a van der Waals gas as the working substance the so called Curzon and Ahlborn-Novikov engine is studied. It is shown that some previous results found in the literature of finite time thermodynamics can be written in a more general form, means of this gas and by taking a non linear heat transfer law. 1. Introduction In classical equilibrium thermodynamics the efficiency of a reversible the...
متن کاملMolecular kinetic analysis of a finite-time Carnot cycle
We study the efficiency at the maximal power ηmax of a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas. In several systems interacting with the hot and cold reservoirs of the temperatures Th and Tc, respectively, it is known that ηmax = 1− √ Tc/Th which is often called the Curzon-Ahlborn (CA) efficiency ηCA. For the first time numerical experiments...
متن کاملThe equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate...
متن کاملOn the Dynamic Robustness of a Non-Endoreversible Engine Working in Different Operation Regimes
In this work, we focused mainly in the analysis of stability of a non-endoreversible Curzon-Ahlborn engine working in an ecological regime. For comparison purposes we also include the Maximum Efficient Power (MEP) regime taking into account the engine time delays. When the system’s dynamic stability is compared with its thermodynamics properties (efficiency and power output), we find that the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014